INTERRUPTED INFERIOR VENA CAVA AND CARDIAC TYPE PARTIAL ANOMALOUS PULMONARY VENOUS RETURN WITH ATRIAL SEPTAL DEFECT IN A 18-YEAR-OLD ADULT: A CASE REPORT

RAGURAMAN
Department of Radiology, Global Health City, Chennai, India

SRIPRIYA
Department of Radiology, Global Health City, Chennai, India

KARTIK
Department of Radiology, Global Health City, Chennai, India

DEEPAHREE
Department of Radiology, Global Health City, Chennai, India

KARTHIKGAI SELVI
Department of Radiology, Global Health City, Chennai, India

ABSTRACT
We present a woman having congenital anomalies of the inferior vena cava and partial anomalous pulmonary venous return from the right lung with atrial septal defect in a 18-year-old. Congenital anomalies of inferior vena cava are rare. They are seen more often in young males. If there are not other anomalies, they are latent for a long time. Peripheral venous thrombosis, chronic venous insufficiency, dyspnea and fatigue are often the first symptoms of these anomalies. Surgical repair of atrial septal defect with partial anomalous pulmonary venous return include provision of durably unobstructed systemic and pulmonary venous pathways, closure of the atrial septal defect, and avoidance of arrhythmias. The diagnosis has been determined by compression ultrasonography with color doppler assessment, multidetector computed tomography angiography and echocardiography.

Keywords: Interrupted IVC, Partial anomalous pulmonary venous return.

INTRODUCTION
Anomalies in the inferior vena cava (IVC) occur in 0.3% of otherwise healthy individuals and in 0.6-2% of patients with other cardiovascular defects (Phillips, 2000), but this information could be underestimated, since such anomalies are usually asymptomatic and casually discovered in imaging examinations or abdomen surgery. It is commonly associated with other congenital heart disease (Saba et al, 2008) (Vijayvergiya et al, 2005). Absence of the hepatic segment of the inferior vena cava (IVC), withazygos continuation into the right or left superior vena cava (SVC) has been reported as an incidental finding at postmortem examinations since 1793 (Abernathy, 1793).

Partial anomalous pulmonary venous connection (PAPVC) is present in approximately 90% of patients with atrial septal defect (ASD) (Kirshbom et al, 2003). This represents a physiologic left-to-right shunt with subsequent risk for pulmonary vascular disease, Eisenmenger syndrome, and biventricular failure (Shahriari et al, 2006). Four basic anatomic types of anomalous venous connection have been defined based on the level of the pulmonary systemic (venous) connection relative to the heart and include the following: supracardiac (type I), intracardiac (type II), infracardiac (type III), and mixed drainage (type IV)
Although uncommon, patients without obstruction and without significant heart failure can present later in life and even during adulthood (Kirshbom et al, 2003).

**CASE PRESENTATION**

A 18-year-old woman from Saudi Arabia with atrial septal defect was admitted for exertional dyspnea and fatigue. She had a general tendency and swelling both of the lower limbs. Echocardiography had documented atrial septal defect.

On physical examination, she presented in both lower limbs swelling. A venous color flow Doppler ultrasonography of the both lower-extremity were requested, showing bilateral patent venous channels but there were not peripheral venous thrombosis. On auscultation pansystolic murmur on the left side of sternal border were heard. ECG was normal in sinus rhythm.. A chest X-ray showed mild heart enlargement. Echocardiography documented enlargement of the right ventricle and both atria with atrial septal defect and normal function of both ventricles (Figure 1). Right-sided pulmonary veins were not identified. Multidetector Computerized Tomography (CT) angiography confirmed atrial septal defect and abnormal return of right-sided pulmonary veins into the right atrium (Figure 2) and showed inferior vena cava on the right side of spine and showed total interruption of IVC below the hepatic veins (Figure 3). Multidetector CT angiography provided full description of a complex anomaly documenting right inferior vena cava with azygous continuation, draining into the superior vena cava (Figure 4, 5) and hepatic veins were draining directly into the right atrium (Figure 3). Ultrasound revealed absence of spleen.

**Figure 1.** Preoperative echocardiographic evaluation shows atrial septal defect (arrow; between calipers; RA: right atrium, LA: left atrium).

**Figure 2.** Contrast-enhanced axial CT image demonstrates abnormal return of right-sided pulmonary veins into the right atrium (white small arrow) and atrial septal defect (ASD).

**Figure 3.** Coronal multiplanar reformation CT image demonstrates the absence of inferior vena cava and h veins draining directly into the right atrium (white arrow).

**Figure 4.** Sagittal I CT image demonstrates vena cava superior (white small arrow) and enlarged azygos vein (white large arrow).
DISCUSSION

In this paper, we present firstly in literature a case with complex congenital anomaly including infrahepatic IVC interruption with azygos continuation and partial pulmonary venous return associated with ASD.

The IVC is composed of four segments: hepatic, suprarenal, renal and infrarenal. All four segments are derived from three embryological venous channels that develop during the 6th to 8th gestational weeks - the postcardinal, subcardinal and supracardinal veins, in order of appearance, respectively. The infrarenal portion of the IVC is believed to arise from the right supracardinal vein. The azygos vein is also derived from the upper segment of the right supracardinal vein, and the hemiazygos is from the upper left supracardinal vein (Bass et al, 1999) (Demos et al, 2004).

Absence of IVC infrarenal segment is an extremely rare anomaly. Previous studies reported that only 6% of IVC anomalies occur in the renal or infrarenal segments (Demos et al, 2004), but is more frequently associated with other cardiovascular malformations (dextracardia, septal defects, transposition of the great vessels, pulmonary artery stenosis, common atrium) and situs anomalies, such as left isomerism (polysplenia syndrome) (Saba et al, 2008).

Infrahepatic IVC interruption with azygos continuation is a rare congenital anomaly, especially when it is not associated with congenital heart disease. Its prevalence is 0.6-2.0% in patients with congenital heart disease and less than 0.3% among otherwise normal patients (Timmers et al 1999). This developmental anomaly results in termination of the IVC below the hepatic vein. Systemic venous flow beyond this point is accommodated by the dilated azygos and hemiazygos veins, which eventually empty into the superior vena cava through a dilated azygos arch (Chuang et al, 1974). In our case was diagnosed partial pulmonary venous return anomalous with ASD in adult and polysplenia and infrahepatic IVC interruption with azygos continuation.

Failure of the hepatic and prerenal segments to fuse is the most common developmental anomaly of the IVC and results in infrahepatic IVC interruption(Chuang et al, 1974) (Kocaturk et al, 2005). The infrahepatic IVC may continue as the azygos vein or may continue as the hemiazygos vein to the left superior vena cava, intrathoracic veins (Arakawa et al, 1987) or anomalous infrahepatic veins (Balkanci et al, 1993) The hepatic segment of the IVC drains directly into the right atrium as in our case (Vijayvergiya et al, 2005). The dilated azygos vein may be misinterpreted as a paracardiac or mediastinal mass on chest radiography (Vijayvergiya et al, 2005). The anomaly may be associated with recurrent deep vein thrombosis of the lower limbs (Vijayvergiya et al, 2005), bilateral venous insufficiency as in our case or with sick sinus syndrome (Lin et al, 2001). There can be procedural difficulties during right heart catheterisation (Ramsaran et al, 1995) electrophysiological studies (Lin et al, 2001).
bypass surgery, femoral vein catheter advancement, IVC filter placement, and temporary pacing through the transfemoral route (Vijayvergiya et al, 2005).

CONCLUSION

Combine interrupted inferior vena cava and partial anomalous pulmonary venous returns with ASD are very rare. They can be seen in young males. They can be latent for a long time. Peripheral venous thrombosis, dyspnea and fatigue are often the first symptoms of these anomalies. This case report should emphasize the importance of thorough preoperative evaluation of both systemic and pulmonary venous returns in subjects with congenital heart disease to avoid an injury of abnormally leading large vessels. An IVC abnormality should be excluded. It also illustrates the role of modern imaging techniques in establishing correct diagnosis.

ABBREVIATIONS

ASD: atrial septal defect; CT: Computerized Tomography; IVC: inferior vena cava; PAPVC: Partial anomalous pulmonary venous connection; SVC: superior vena cava.

CONSENT

Informed written consent was received from all authors for publication of the manuscript and figures.

REFERENCES


Abernathy J: Account of two instances of uncommon formations in the viscera of the human body.

*Philosoph Trans* 1793, 83:59-66.


Demos TC, Posniak HV, Pierce KL, Olson MC, Muscato M: Venous anomalies of the thorax.


*Heart* 2005, 91:1514.


Balkanci F, Ozmdn MN: Case report: interruption of the inferior vena cava with anomalous intrahepatic continuation.


Lin KH, Kuo CT, Lin CT: Screw-in atrial lead in a sick sinus syndrome patient with anomalous inferior vena cava.
